Abstract

The present work has been performed to study the growth and metabolic activities of two maize cultivars (cv. 323 and cv. 324) which are shown to have different tolerances to salt stress and to determine the effects of inoculation with Azospirillum spp. Along with identifying the mechanisms of maize salt tolerance and the role of Azospirillum (growth promoting rhizobacteria) in elevating salinity stress conditions is examined Maize cv. 323 was the most sensitive to salinity, while cultivar 324 was the most resistant of the 12 maize cultivars tested. Cultivars differences were apparent with certain growth criteria as well as related metabolic activities. The lack of a negative response to increasing NaCl concentration for water content, dry matter yield and leaf area of cv. 324 up to a concentration of − 0.6 MPa indicated salt tolerance. While for cv. 323 there was a marked inhibitory effect of salinity on growth. In the tolerant cv. 324, soluble and total saccharides, soluble protein in shoots and total protein in roots increased with salinity stress. The sensitivity of cv. 323 however was associated with depletion in saccharides and proteins. Proline accumulation was higher and detected earlier at a lower salinity concentration in the salt sensitive cv. 323 comapred to the salt tolerant cv. 324. When salt stressed maize was inoculated with Azospirillum, proline concentration declined significantly. The present study showed, in general, that the concentration of most amino acid increased on exposure to NaCl as well as when inoculated with Azospirillum. The relatively high salt tolerance of cv. 324, compared with cv. 323 was associated with a significantly high K+/Na+ ratio. Azospirillum inoculation markedly altered the selectivity of Na+, K+ and Ca++ especially in the salt sensitive cultivar cv. 323. Azospirillum restricted Na+ uptake and enhanced the uptake of K+ and Ca++ in cv. 323. A sharp reduction in the activity of nitrate reductase and nitrogenase in shoots and roots of both cultivars was induced by salinity stress. This reduction in NR and NA activity was highly significant at all salinity concentrations. Azospirillum inoculation stimulated NR and nitrogenase activity in both shoots and roots of both cultivars. The differential effect of Azospirillum inoculation on maize cv. 323 and cv. 324 illustrates the different sensitivity of these two cultivars to stress, but still does not provide any clues as to the key events leading to this difference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call