Abstract

Landslide failure mechanisms are influenced by topography, lithology, structure and rock mass damage – factors that also control landslide susceptibility. Failure mechanisms, however, are rarely considered in regional-scale coseismic landslide susceptibility analyses. In this study, we use 3D pixel tracking in pre- and post-earthquake aerial imagery, geomorphic mapping, rock mass characterisation, and geophysical ground investigations to develop conceptual models for three earthquake-induced landslides triggered by the 2016 Mw 7.8 Kaikōura earthquake on New Zealand's South Island. Analysis of two incipient landslides in Cretaceous greywacke illustrates the failure stages of a rock mass comprising multiple sets of closely-spaced and low persistence discontinuities. Conversely, analysis of a landslide in Neogene massive siltstones illustrates the role of high-persistence bedding planes in generating large translational rockslides. These two distinct mechanisms typify failures in highly deformed basement and overlying massive sedimentary rocks respectively, and highlight the link between rock mass damage, failure mechanism, and initiation. In greywacke failures, the rupture plane initiated close to the ridgetop and propagated as a joint-step-path failure along pre-existing, but low-persistence joints whereas the landslide in Neogene siltstone initiated by sliding along weak, high persistence, bedding planes near the base of the slope where topographic stresses are highest. Analysis of landslide displacements furthermore points out that the evolution of landslides is closely related to rock mass characteristics. In highly jointed Cretaceous greywacke, relatively little displacement is needed for rock mass disintegration and avalanching to occur whereas in Neogene siltstone, the landslide displaces as a coherent body - even at large displacements.Our results suggest that (1) failure mechanisms and, as a result, coseismic landslide susceptibility factors, may vary fundamentally in different geological settings; (2) characteristic spatial landslide displacement patterns may be used to remotely identify relevant failure mechanisms; and (3) the amount of displacement that can be accommodated before a failure transitions from sliding to avalanching, is highly dependent on material characteristics and topographic constraints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call