Abstract

Lattice mismatched GaSb nanostructures were grown using droplet epitaxy. In this method, liquid Ga droplets are deposited on GaAs substrates and then exposed to a Sb flux at various temperatures. At increasing temperature and droplet volumes, the morphologies changed from two-dimensional islands to nanoholes, three-dimensional islands, rings, and clusters of islands. A theoretical model describes the relationship between the volume of the droplet and the final nanostructure, and is validated by kinetic Monte Carlo simulations. The combined experimental and simulation results demonstrate another process to obtain complex nanostructures, widening the design window for devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.