Abstract

Given its relative rarity, it may at first seem surprising that chronic myeloid leukemia (CML) has garnered so much attention over the last decade. Yet, the advances in molecular pathogenesis that have been derived from studying this leukemia have clearly benefited all of oncology. Moreover, the strides in drug design and development that have also ensued around CML have given rise to what others have called a molecular revolution in cancer therapy. While a majority of patients with chronic phase CML (CP-CML) have an excellent durable response to imatinib (Gleevec, Novartis, Basel, Switzerland), a clear minority will unfortunately have signs of primary or secondary resistance to therapy. Significant efforts geared toward understanding the molecular mechanisms of imatinib resistance have yielded valuable insights into the biology of drug trafficking into and out of cells, epigenetic control of cellular processes, alterations in enzymatic structures, and the rational structural-based design of small molecule enzyme inhibitors. This review will describe the efforts at understanding the pathogenesis of imatinib resistance and the molecular rationale for the development of second- and now third-generation therapies for patients with CML.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.