Abstract

Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations. Irreversible EGFR-TKIs which include the second-generation and third-generation EGFR-TKIs are developed to overcome T790M mediated resistance. The second-generation EGFR-TKIs inhibit the wide type (WT) EGFR combined with dose-limiting toxicity which limits its application in clinics, while the development of third-generation EGFR-TKIs brings inspiring efficacy either in vitro or in vivo. The acquired resistance, however, will also occur and limit their response. Understanding the mechanisms of resistance to irreversible EGFR-TKIs plays an important role in the choice of subsequent treatment. In this review, we show the currently known mechanisms of resistance which can be summarized as EGFR dependent and independent mechanisms and potential therapeutic strategies to irreversible EGFR-TKIs.

Highlights

  • The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) significantly improve the outcomes as an initial treatment in non-small cell lung cancer (NSCLC) patients with activating Epidermal growth factor receptor (EGFR) mutations compared with standard platinum-doublet chemotherapy

  • Epidermal growth factor receptor (EGFR) T790M mutation is the most frequent mechanism which accounts for about 60% of acquired resistance to first-generation EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) patients harboring EGFR activating mutations

  • T790M mutation was confirmed to be the resistance mechanism of second-generation EGFR-TKIs in tissue specimen. It is still the most important mechanism accounting for 30–50% of the resistance both in reversible EGFR-TKIs naive patients and treated patients according to the rencent studies. [18, 19]. (Table 2) But the phase II B lux-lung 7 (NCT01466660) study indicated that afatinib significantly prolonged the progression-free survival (PFS)

Read more

Summary

INTRODUCTION

The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) significantly improve the outcomes as an initial treatment in non-small cell lung cancer (NSCLC) patients with activating EGFR mutations compared with standard platinum-doublet chemotherapy. In cell lines with EGFR T790M mutation, the more resistant subclones harboring amplified T790M in cis with EGFR activating mutation would be selected leading to a more robust resistance under the treatment of high dose of dacomitinib [16, 17]. These pre-clinical studies indicate that the second-generation EGFR-TKIs cannot prevent the occurrence of resistance caused by T790M mutation irrespective of the drug concentrations. It is still the most important mechanism accounting for 30–50% of the resistance both in reversible EGFR-TKIs naive patients and treated patients according to the rencent studies. [18, 19]. (Table 2) But the phase II B lux-lung 7 (NCT01466660) study indicated that afatinib significantly prolonged the progression-free survival (PFS)

Sample Methods
Findings
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.