Abstract
1,2-dideuterio-cyclohexene, 1,2-dideuterio-cyclooctene, and trans-3,4-dideuterio-hex-3-ene were reacted with three >NO* radicals: 4-hydroxyTempo, di-tert-butyliminoxyl, both used as the actual radicals, and phthalimide-N-oxyl (PINO) generated from N-hydroxyphthalimide (NHPI) by its reaction with tert-alkoxyl radicals (t-RO*) and with lead tetraacetate. In all cases, except the NHPI/Pb(OAc)4 system, only mono >NO-substituted alkenes were produced. The 2H NMR spectra imply that 88-92% of monoadducts were formed by the initial abstraction of an allylic H-atom, followed by capture of the allylic radical by a second >NO*, while the remaining 12-8% appear to be formed by an initial addition of >NO* to the double bond followed by H-atom abstraction by a second >NO*. A substantial and sometimes the major product formed with the NHPI/Pb(OAc)4 system has two PINO moieties added across the double bond. Since such diadducts are not formed with the NHPI/t-RO* system, a heterolytic mechanism is proposed, analogous to that known for the Pb(OAc)4-induced acetoxylation of alkenes. A detailed analysis of the NHPI/Pb(OAc)4/alkene products indicates that monosubstitution occurs by both homolytic and heterolytic processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.