Abstract

Carcinogenesis is a multistage process with sequences of genetic events that govern the phenotypic expression of a series of transformation steps that lead to the development of metastatic cancer. To better understand the mechanisms involved in human bronchial carcinogenesis induced by alpha particles from radon, we have developed a model of neoplastic transformation based on human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells. Cells exposed to alpha particles become tumorigenic after progressing through a series of sequential stages including altered growth pattern, resistance to serum-induced terminal differentiation, agar-positive growth, tumorigenicity, and metastasis, with each step representing a necessary yet insufficient step toward the later, more malignant phase. Cell fusion studies indicated that the radiation-induced tumorigenic phenotype in BEP2D cells can be completely suppressed by fusion with nontumorigenic BEP2D cells. Several cellular differentiation and growth regulation genes such as DCC (deleted in colorectal cancer), CDKN1A (also known as p21(C1P1)) and the gene that encodes DNA-PK were frequently found to be modulated in tumorigenic BEP2D cells and may be related to the process of carcinogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.