Abstract

The mechanisms has been investigated whereby quinacrine binds to the DNA of nuclei and chromosomes in cytological preparations fixed in methanol-acetic acid. A variety of evidence is consistent with the idea that the quinacrine binds by intercalation. This is supported by a high value for the affinity of quinacrine for DNA, together with a saturation value of 0.2 quinacrine molecules/nucleotide; binding in the presence of strong salt solutions; and inhibition of fluorescence and banding by denaturation or depurination of DNA. At high quinacrine concentrations, weak binding of quinacrine to nuclei and chromosomes also occurs, but this is not relevant to the production of strong fluorescence or Q-banding patterns. A number of factors were tested which might have affected quinacrine fluorescence and banding. These included: pH; blocking protein amino groups by acetylation or benzoylation; introduction of hydrophobic groups by benzoylation; and dephosphorylation. All these treatments were without effect. However, comparison of the quinacrine fluorescence of human and onion nuclei, which differ substantially in the base composition of their DNA, shows that quinacrine fluorescence can be enhanced in cytological preparations by AT-rich DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.