Abstract

We explored the potential energy surfaces for adenine synthesis by oligomerizations of HCN or HNC from CBS-QB3 calculations. The pathways have been obtained for the formation of the covalently bound HCN dimer, trimer, tetramer, and pentamer (adenine) by sequential additions of HCN or HNC. The activation energies of the individual oligomerization stages are a few hundred kilojoules per mole, which prevent efficient adenine synthesis in interstellar space or in the atmosphere of Titan. On the other hand, when the oligomerizations start from HCNH(+), the activation energies of sequential HCN or HNC additions are significantly reduced. Kinetic analyses results suggest that adenine synthesis by proton-catalyzed oligomerizations cannot occur efficiently in interstellar space or in the atmosphere of Titan, even though some oligomerization stages can occur under the latter condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.