Abstract

Adaptive phenotypic plasticity provides a mechanism of developmental rescue in novel and rapidly changing environments. Understanding the underlying mechanism of plasticity is important for predicting both the likelihood that a developmental response is adaptive and associated life-history trade-offs that could influence patterns of subsequent evolutionary rescue. Although evolved developmental switches may move organisms toward a new adaptive peak in a novel environment, such mechanisms often result in maladaptive responses. The induction of generalized physiological mechanisms in new environments is relatively more likely to result in adaptive responses to factors such as novel toxins, heat stress, or pathogens. Developmental selection forms of plasticity, which rely on within-individual selective processes, such as shaping of tissue architecture, trial-and-error learning, or acquired immunity, are particularly likely to result in adaptive plasticity in a novel environment. However, both the induction of plastic responses and the ability to be plastic through developmental selection come with significant costs, resulting in delays in reproduction, increased individual investment, and reduced fecundity. Thus, we might expect complex interactions between plastic responses that allow survival in novel environments and subsequent evolutionary responses at the population level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call