Abstract

Photoexcitation of protonated aromatic amino acids leads to CαCβ bond breakage among other channels. There are two pathways for the CαCβ bond breakage, one is a slow process (microseconds) that occurs after hydrogen loss from the electronically excited ion, whereas the other is a fast process (nanoseconds). In this paper, a comparative study of the fragmentation of four molecules shows that the presence of the carboxylic acid group is necessary for this fast fragmentation channel to occur. We suggest a mechanism based on light-induced electron transfer from the aromatic ring to the carboxylic acid, followed by a fast internal proton transfer from the ammonium group to the negatively charged carboxylic acid group. The ion formed is a biradical since the aromatic ring is ionized and the carbon of the COOH group has an unpaired electron. Breakage of the weak CαCβ bond gives two even-electron fragments and is expected to quickly occur. The present experimental results together with the ab initio calculations support the interpretation previously proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.