Abstract
To investigate mechanisms of acid-base changes during peritoneal dialysis (PD), a mathematical model was developed that describes kinetics of peritoneal bicarbonate, CO2, and pH during the dwell with both high and low lactate-containing dialysis fluids. The model was based on a previous modification of the Rippe 3-Pore model of water and solute kinetic transport across the peritoneal membrane during the PD dwell. A central feature of the present modification is an electroneutrality constraint on peritoneal-fluid ion concentrations, which results in the conclusion that peritoneal bicarbonate-concentration kinetics are entirely dependent on the kinetics of the other ions. This new model was able to closely predict peritoneal bicarbonate-concentration kinetics during the dwell. Predictions of total peritoneal bicarbonate-mass kinetics were greater than those of porous, transmembrane bicarbonate transport, suggesting that a portion of bicarbonate comes from CO2 transport, both porous and nonporous and then a partial conversion to bicarbonate. Fitting the model to experimental pH data during the dwell, required addition of a peritoneal CO2 mass-conservation constraint, coupled with the description for peritoneal bicarbonate kinetics. Predicted pH kinetics during the dwell, closely mimicked the experimental data. The conclusion was that the mechanisms describing peritoneal bicarbonate and pH kinetics during PD must include 1) electroneutrality of peritoneal fluid, 2) porous transport of bicarbonate and CO2, 3) nonporous transport of CO2, and 4) CO2 conversion to bicarbonate. These mechanisms are quite different and more complex than the bicarbonate-centered, lactate to acid-generation mechanisms previously proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ASAIO journal (American Society for Artificial Internal Organs : 1992)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.