Abstract
Symmetric cells with porous La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) electrodes on Gd0.1Ce0.9O1.95 (GDC) electrolytes were aged at 800°C for 800 hours in ambient air. Electrochemical impedance spectroscopy (EIS) measurements performed periodically at 700°C showed a continuous increase of the polarization resistance from 0.15 to 0.34 Ω·cm2. Three-dimensional (3D) tomographic analysis using focused ion beam–scanning electron microscopy (FIB-SEM) showed negligible changes due to the ageing, suggesting that the observed resistance increase was not caused by electrode morphological evolution. However, an increased amount, by a factor of 3, of a water-soluble Sr rich surface phase on the aged LSCF electrode was detected by an etching procedure coupled with inductively coupled plasma-optical emission spectrometry (ICP-OES). The electrochemical analysis in combination with the microstructural parameters determined by FIB-SEM was used to examine the effect of Sr segregation on the rate of oxygen surface exchange, based on the Adler-Lane-Steele (ALS) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.