Abstract

The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.