Abstract

This paper reviews the peripheral and central neural mechanisms underlying pain from articular tissues innervated by spinal and trigeminal afferents. The paper especially addresses trigeminal mechanisms related to pain from the temporomandibular joint and its associated craniofacial musculature. Recent studies have shown the existence of articular nociceptive primary afferents that project to the spinal cord dorsal horn and trigeminal brainstem complex. A particular feature of most neurones receiving these deep nociceptive afferent inputs is their responsivity also to cutaneous nociceptive afferent inputs. This suggests the involvement of these neurones not only in the detection of acute articular pain, but also in the hyperalgesia and poor localization, spread, and referral of pain that characterize many painful conditions of joints and other deep structures. While only limited information is available on related higher brain centre mechanisms, convergence and interaction between cutaneous and deep afferent inputs also seem to be a characteristic of somatosensory neurones in the thalamus and somatosensory cerebral cortex. Muscle and autonomic reflexes may be induced by such deep noxious stimuli, but the functional significance of some of these effects (e.g., in relation to clinical concepts of myofascial dysfunction) requires further study in more appropriate functional settings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.