Abstract
Plasma processing is used to fabricate super hydrophilic or super hydrophobic polymeric surfaces by means of O2 plasma etching of two organic polymers, namely, poly(methyl methacrylate) (PMMA) and poly(ether ether ketone) (PEEK); a C4F8 plasma deposition follows O2 plasma etching, if surface hydrophobization is desired. We demonstrate high aspect ratio pillars with height ranging from 16 nm to several micrometers depending on the processing time, and contact angle (CA) close to 0 degrees after O2-plasma treatment or CA of 153 degrees (with CA hysteresis lower than 5 degrees) after fluorocarbon deposition. Super hydrophobic surfaces are robust and stable in time; in addition, aging of super hydrophilic surfaces is significantly retarded because of the beneficial effect of the nanotextured topography. The mechanisms responsible for the plasma-induced PMMA and PEEK surface nanotexturing are unveiled through intelligent experiments involving intentional modification of the reactor wall material and X-ray photoelectron spectroscopy, which is also used to study the surface chemical modification in the plasma. We prove that control of plasma nanotexture can be achieved by carefully choosing the reactor wall material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.