Abstract
Using first-principles molecular dynamics, we identified the mechanisms of the oxidation of α-Ti surfaces. Si segregation was found to suppress α-case formation in Ti, which was also confirmed experimentally. Charge transfer from the metal atoms to the gas molecules drives the initial stages of oxidation on the pure and Si-segregated α-Ti (0001) surfaces, while during the later stages, oxidation proceeds via oxygen penetration into the slab. Growth of the oxide network was strongly dependent on the oxidation state of the surface Ti atoms. Oxide growth in the Si-segregated material was retarded with the formation of TiOx (0.5 ≤ x ≤ 1) on the surface, which corresponds to the +1.5 oxidation state of the Ti atoms. The simulations and experiments clearly showed that Si reduces the ingress of oxygen into Ti, even at high temperatures. The primary and critical steps of identifying, understanding, and controlling the mechanisms of oxidation of Ti surfaces at high temperatures, as performed here, are expected to aid the design of new alloys with improved oxidation resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.