Abstract

Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons.

Highlights

  • Recognizing objects in the environment has a clear advantage for the survival and reproduction of any organism

  • Because pigeons are assumed to have little or no experience with the objects presented to them in categorization experiments, an important part of this research has focused on object category learning instead of visual object representation, which is different from the focus of most human research (Soto and Wasserman, 2012b)

  • A full account of what we know about object categorization in pigeons cannot focus exclusively on vision; we will review the learning mechanisms that might operate in non-visual areas of the pigeon brain in sections The Role of Error-driven Reinforcement Learning and Learning of Abstract Category Representations

Read more

Summary

Introduction

Recognizing objects in the environment has a clear advantage for the survival and reproduction of any organism. We have shown (Soto and Wasserman, 2010b) that Sutton and Roberts’ results can be explained as a blocking effect, in which elements common to all of the object categories acquire control over performance early in training.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.