Abstract

The excitation energy of pigment molecules in photosynthetic antennae systems is utilised by photochemistry, partly it is thermally dissipated, and partly it is emitted as fluorescence. Changes in the quantum yield of chlorophyll (Chl) fluorescence reflect the changes in quantum yield of photochemical reaction and thermal dissipation of the excitation energy. Decrease of the Chl fluorescence quantum yield is called the Chl fluorescence quenching. The decrease of the quantum yield that is accompanied by photochemical reactions has been termed the photochemical quenching, and the decrease accompanied by thermal dissipation of the excitation energy is called the non-photochemical quenching. This review deals with mechanisms of the non-photochemical quenching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.