Abstract

Simultaneous sludge fermentation and nitrite removal (SFNR) was investigated as a novel sludge/wastewater treatment process with high nitrogen concentrations. The results showed that introducing nitrite improved the primary sludge (PS) fermentation system by improving the chemical oxygen demand (COD) yields and the volatile suspend solid (VSS) reduction. At a nitrite dosage of 0.2 g g SS−1, the COD production was 1.02 g g VSS−1 and the VSS reduction was 63.4% within 7-day fermentation, while the COD production was only 0.17 g g VSS−1 and the VSS reduction was only 4.9% in the blank test. Nitrite contained in wastewater was removed through denitrification process in the SFNR system. The solubility of carbohydrate and protein was substantially enhanced, and their contents reached the peak once nitrite was consumed. In addition, the nutrient release and methane generation were inhibited in the SFNR system, which alleviated the environmental pollution. Unlike traditional fermentation systems, neither alkaline condition nor high free nitrite acid (FNA) concentration affected the PS fermentation in the SFNR system. Molecular weight distribution (MWD) and Live/Dead cell analysis indicated that the sludge disruption by nitrite and the consumption of soluble organic substances in sludge might play important roles in SFNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.