Abstract

Nicotine, locally administered into the dorsal raphe nucleus (DRN) of rat midbrain slices, increased the discharge rate of 70% of serotoninergic neurons, decreased it in 30% and induced reciprocal oscillatory increases in serotonin (5-hydroxytryptamine, 5-HT) and γ-aminobutyric acid (GABA) release. All of nicotine's stimulatory effects were maximal at 2.15 μM. Bicuculline, a GABA A receptor antagonist, increased the firing rate in 64% of serotoninergic neurons, decreased it in 36% and augmented serotonin and GABA release. Bicuculline increased nicotine's stimulatory effects on firing rate but did not reverse the inhibitory ones. N-[2-[4-(2-Methoxyphenyl)-1-piperazinyl]ethyl]- N-2-pyridinil-cyclohexanecarboxamide (WAY-100635), a 5-HT 1A receptor antagonist, increased the firing rate of 88% of serotoninergic neurons, as well as serotonin and GABA release and reversed nicotine's inhibitory action on serotoninergic neurons. These data suggest that nicotine decreases the firing rate of one third of serotoninergic neurons through serotonin release and increases the firing rate of the remaining two thirds, due to stronger stimulatory than indirect inhibitory effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.