Abstract

The mechanisms of NH3 and NO2 detection by single-walled carbon nanotube-based devices are investigated by ab initio calculations and the non-equilibrium Greens function (NEGF) methodology. While both NH3 and NO2 can physisorb to a pristine carbon nanotube, we show that their adsorption only results in small current changes through the device. For a carbon nanotube (CNT) attached to gold nanowire leads, the most sensitive detection site is at the CNT near the CNT-Au contact, where chemisorption occurs. The resulting change in electron transmission and low-bias current can lead to over 30% sensitivity. While both NH3 and NO2 can also chemisorb at the Au electrodes, their adsorption results in only a small change in the plurality of the conducting levels of the gold layers, and thus a small effect on current. In order to enhance the detection sensitivity, it is thus beneficial to mask the electrodes to prevent chemisorption. Furthermore, the length of the pure CNT segment does not strongly affect the relative sensitivity. Our results suggest that a short-CNT device with exposed contact regions and masked electrodes would have the greatest sensitivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.