Abstract

Many syndromes of lung injury are associated with accumulation of neutrophils within the pulmonary parenchyma. These neutrophils have the capacity to produce lung injury by products including proteases and reactive oxygen species (ROS). We examined the ability of activated neutrophils to solubilize human alveolar extracellular matrix (ECM), and by use of scavengers and inhibitors, evaluated the role of ROS and proteases in this process. Supernatants of phorbol myristate acetate-activated neutrophils routinely solubilized 10.2% ± 0.8% (n = 30) of collagen in human alveolar ECM, as measured by hydroxyproline release. Scavengers of ROS had no significant effect on ECM solubilization. Inhibitors of metalloproteases partially inhibited ECM solubilization (38.5% ± 4.6% inhibition by ethylenediaminetetraacetic acid [n = 6], and 37.0% ± 14.7% by 1,10-phenanthroline [n = 6]; p < 0.05). Inhibitors of the neutrophil serine proteases, elastase and cathepsin G, markedly inhibited ECM solubilization (100.9% ± 3.7% by α 1-protease inhibitor [α 1-PI] [n = 6] and 81.9% ± 0.1% by soybean trypsin inhibitor [n = 6]; p < 0.01). Since α 1-PI completely inhibited solubilization, metalloprotease activity appeared to be related to serine protease activity. This finding was confirmed by the observation that addition of a metalloenzyme activator, p-aminophenylmercuric acetate, in the presence of α 1-PI, restored solubilization to the same level as that inhibited by metal chelators. We conclude that human neutrophil metalloproteases and serine proteases directly solubilize human alveolar ECM. Furthermore, neutrophil serine proteases activate latent metalloproteases. However, ROS were not demonstrated to play a major role in ECM solubilization in our system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.