Abstract
During the global myocardial ischemia of cardiac arrest and during regional myocardial ischemia due to local impairment of coronary blood flow, intramyocardial carbon dioxide tensions (Pmco2) of ischemic myocardium increase to levels exceeding 400 Torr. The mechanism of such myocardial hypercarbic acidosis is as yet incompletely understood, specifically whether these increases in Pmco2 are due to increased oxidative metabolism, decreased CO2 removal, or buffering of metabolic acids. We therefore measured Pmco2 and the total CO2 content of rat hearts harvested before, during, and after resuscitation from cardiac arrest. Pmco2 significantly increased from an average of 63 to 209 Torr during a 4-min interval of untreated ventricular fibrillation. This was associated with concurrent decreases in intracellular pH from an average of 7.03 to 6.02 units. The total CO2 content of the myocardium simultaneously decreased from 17.0 to 16.5 mmol/kg. Accordingly, increases in Pmco2 and [H+] were observed in the absence of increases in the total CO2 content and therefore the calculated myocardial bicarbonate. These observations in the rat model implicate buffering of metabolic acids by bicarbonate rather than increases in CO2 production or decreases in CO2 removal as the predominant mechanism accounting for myocardial hypercarbia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.