Abstract

Molecular mobility of oxygen, O2, and nitrogen, N2, in Carbon Molecular Sieves, CMS, was investigated using the Frequency Response, FR, technique to identify mass-transfer mechanisms and related kinetic time constants. The FR data showed that O2 mobility in four types of CMS was dominantly controlled by surmounting surface-barrier resistances, whereas the mobility of both O2 and N2 in pellets of a fifth CMS type obeyed the Fickian diffusion model. Temperature and pressure dependences of surface-barrier penetration time constants were obtained for O2 and N2 in several of those CMS materials. The kinetic time constants of surface-barrier penetration were related to Langmuir-type rate constants, which indicates that kinetic behavior of O2 therein could also be interpreted in terms of a Langmuir-kinetics equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.