Abstract

The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.