Abstract

This study investigated the mechanism underlying the beneficial effects of mineralocorticoid receptor (MR) antagonists in patients with resistant hypertension and diabetic nephropathy by examining post-translational modification of the MR by O-linked-N-acetylglucosamine (O-GlcNAc), which is strongly associated with type 2 diabetes. Coimmunoprecipitation assays in HEK293T cells showed that MR is a target of O-GlcNAc modification (O-GlcNAcylation). The expression levels and transcriptional activities of the receptor increased in parallel with its O-GlcNAcylation under high-glucose conditions. Liquid chromatography-tandem mass spectrometry revealed O-GlcNAcylation of the MR at amino acids 295-307. Point mutations in those residues decreased O-GlcNAcylation, and both the protein levels and transcriptional activities of MR. In db/db mouse kidneys, MR protein levels increased in parallel with overall O-GlcNAc levels of the tissue, accompanied by increased SGK1 mRNA levels. The administration of 6-diazo-5-oxo-L-norleucin, an inhibitor of O-GlcNAcylation, reduced tissue O-GlcNAc levels and MR protein levels in db/db mice. Thus, our study showed that O-GlcNAcylation of the MR directly increases protein levels and transcriptional activities of the receptor under high-glucose conditions in vitro and in vivo. These findings provide a novel mechanism of MR as a target for prevention of complications associated with diabetes mellitus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call