Abstract
Lung cancer remains the cancer with the highest mortality worldwide, largely due to a limited understanding of the precise molecular mechanisms that drive its progression. microRNAs (miRNAs) have emerged as crucial regulators of lung cancer progression by influencing key cellular processes, notably the epithelial-mesenchymal transition (EMT). EMT is a complex and potentially reversible process where epithelial cells lose their polarity and adhesion, reorganize their cytoskeleton, and transition to a mesenchymal phenotype, enhancing their migratory and invasive capacities. While EMT plays an essential role in normal physiological contexts such as tissue development and wound healing, it is also a critical mechanism underlying the progression and metastasis of lung cancer. This review aims to summarize the latest research findings on the role of endogenous and exosome-derived microRNAs in regulating EMT in lung cancer, focusing on studies conducted over the past five years. It also provides an overview of EMT's essential molecular mechanisms to better understand how miRNAs regulate EMT in lung cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.