Abstract

Rivers efficiently convey microplastics to the sea, but during this transfer microplastic can be temporary stored in sediments, where they undergo further fragmentation due to biological and physical processes. Aiming at shedding light on mechanisms governing microplastic sedimentation in rivers, we analyse deposits accumulated in alternate bars of the Arno River (central Italy). Specifically, we considered microplastics associated with floating plant debris, and those trapped in clastic suspended and bedload deposits. The overall concentration of microplastic ranges between 0.44 and 5.68 items per gram, and is comparable with that of some highly-polluted rivers in the world. Fibers are prevalent among the recovered items, and composition is dominated by nylon. Our measurements reveal that microplastics can be easily trapped by floating plant debris, and stored on bar top zones and river banks. Microplastics are also trapped in gravel and sand deposits. Sand incorporates microplastics both when it is transported at the river bottom under tractional conditions and during the waning flood stage, when settling processes contribute to bed aggradation. Gravels do not entraps microplastics when they move on the river bed, but they are extremely efficient in trapping microplastics during recessional flood stages, when water infiltrates between larger clasts, where it drops suspended microplastics. Further studies based on application of principles of fluvial sedimentology will provide crucial insights to understand mechanisms controlling transport and storage of MPs in river sediments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.