Abstract

The vertebrate immune system monitors whether an organism is invaded by pathogens. Therefore, each cell has to prove itself as healthy. This is achieved by presenting fragments of intracellular protein degradation products on the surface, i.e., each cell displays peptides on specialised proteins known as major histocompatibility complex (MHC) class I proteins. A displayed peptide has to pass certain constraints before its presentation: It has to be excised out of a protein, translocated into the endoplasmic reticulum (ER) and fit into the binding groove of a MHC molecule. In theory, alteration of the cellular protein profile by mutation or infection should force pathogen-specific T-cells to take action via recognition of foreign peptide bound to MHC class I molecules on the cell surface. Unfortunately, pathogens and tumours have evolved many ways to affect antigen presentation and to escape from immune response. Understanding the exact mechanisms of antigen presentation, i.e., protein cleavage and peptide binding by MHC molecules, would allow their manipulation by drugs and lead to the re-establishment of the correct antigen presentation pathway. This review will summarise current knowledge of the mechanisms of antigen presentation and discuss putative targets for therapeutic treatment as well as for vaccination strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.