Abstract
Redox inactive metal ions acting as Lewis acids can control electron transfer from electron donors (D) to electron acceptors (A) by binding to radical anions of electron acceptors which act as Lewis bases. Such electron transfer is defined as metal ion-coupled electron transfer (MCET). Mechanisms of metal ion-coupled electron transfer are classified mainly into two pathways, i.e., metal ion binding to electron acceptors followed by electron transfer (MB/ET) and electron transfer followed by metal ion binding to the resulting radical anions of electron acceptors (ET/MB). In the former case, electron transfer and the stronger binding of metal ions to the radical anions occur in a concerted manner. Examples are shown in each case to clarify the factors to control MCET reactions in both thermal and photoinduced electron-transfer reactions including back electron-transfer reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.