Abstract

During the past two decades, philosophers of biology have increasingly turned their attention to mechanisms of biological phenomena. Through analyses of mechanistic proposals advanced by biologists, the goal of these philosophers is to understand what a mechanism is and how mechanisms explain. These analyses have generally focused on mechanistic proposals for phenomenon that occur at the cellular or sub-cellular level, such as synapse firing, protein synthesis, or metabolic pathway operation. Little is said about the mechanisms of the macromolecular reactions that underpin these phenomena. These reactions comprise a diverse family of reaction types, and include protein folding, macromolecular complex formation, receptor-ligand interactions, and enzyme catalysis. In this paper, I develop an account of mechanism that focuses exclusively on macromolecular reactions. I begin by reviewing how mechanism is understood in enzymology, and how mechanistic concepts of enzymology apply to macromolecular reactions in general. We will see that the mechanism of a macromolecular reaction is most accurately described as a progression of reaction intermediates, where the evolution of intermediates, from one to the next, is characterized by an energetic coupling between chemistry and protein dynamics. I then make the case that this description necessitates a grounding in a process ontology. To describe the mechanism by which a macromolecular reaction occurs is to describe a process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.