Abstract
Selective cyclooxygenase-2 (COX-2) inhibitors such as rofecoxib (Vioxx) and celecoxib (Celebrex) were developed as NSAIDs with reduced gastric side effects. Celecoxib has now been shown to affect cellular physiology via an unexpected, COX-independent, pathway - by inhibiting K(v)2.1 and other ion channels. In this study, we investigated the mechanism of the action of celecoxib on K(v)2.1 channels. The mode of action of celecoxib on rat K(v)2.1 channels was studied by whole-cell patch-clamping to record currents from channels expressed in HEK-293 cells. Celecoxib reduced current through K(v)2.1 channels when applied from the extracellular side. At low concentrations (<or=3 microM), celecoxib accelerated kinetics of activation, deactivation and inactivation. Recovery of rat K(v)2.1 channels from inactivation could be characterized by two components, with celecoxib selectively accelerating the slow component of recovery at <or=10 microM. At >3 microM, celecoxib led to closed-channel block with relative slowing of activation. At 30 microM, it additionally induced open-channel block that manifested in use-dependent inhibition and slower recovery from inactivation. Celecoxib reduced current through K(v)2.1 channels by modifying gating and inducing closed- and open-channel block, with the three effects manifesting at different concentrations. These data will help to elucidate the mechanisms of action of this widely prescribed drug on ion channels and those underlying its neurological, cardiovascular and other effects.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.