Abstract

This research firstly investigated the inhibitory effect of isoquercitrin (ISQ) on Ovalbumin (OVA) glycation. The mechanism was elucidated through the interaction between OVA and ISQ, and changes in glycation sites and degree of each site as deduced by spectroscopy, spectrometry and molecular docking. ISQ significantly inhibited OVA glycation by attenuating the conformational change induced by glycation. It quenched the fluorescence of Trp via static mechanism, and exposed Trp residues to a more hydrophobic surroundings. Formation of OVA-ISQ complex was a endothermic processing driven by hydrophobic interactions, van der Waals forces and hydrogen bonds. LC-Orbitrap-MS/MS revealed that ISQ altered the location of glycation and alleviated the glycation degree of most sites. Molecular docking results indicated that ISQ inserted into the hydrophobic pocket of OVA with six hydrogen bonds and one π-π stacking formed between ISQ and the amino acid residues of OVA, leading to the altered glycation activity of some sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.