Abstract

Investigations of the molecular mechanisms of hypoxia- and ischaemia-induced endogenous neural progenitor cell (NPC) proliferation have mainly focused on factors secreted in response to environmental cues. However, little is known about the intrinsic regulatory machinery underlying the self-renewing division of NPCs in the brain after stroke. Polycomb repressor complex 1-chromobox7 (CBX7) has emerged as a key regulator in several cellular processes including stem cell self-renewal and cancer cell proliferation. The hypoxic environment triggering NPC self-renewal after CBX7 activation remains unknown. In this study, we found that the upregulation of CBX7 during hypoxia and ischaemia appeared to be from hypoxia-inducible factor-1α (HIF-1α) activation. During hypoxia, the HIF-1α-CBX7 cascade modulated NPC proliferation in vitro. NPC numbers significantly decreased in CBX7 knockout mice generated using CRISPR/Cas9 genome editing. We provided the novel insight that CBX7 expression is regulated through HIF-1α activation, which plays an intrinsically modulating role in NPC proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.