Abstract

We have investigated the in vitro integration into dog pancreas microsomal membranes of three integral membrane proteins that were synthesized de novo in a wheat germ cell-free translation system: calcium ATPase of rabbit sarcoplasmic reticulum, MP26 of bovine lens fiber plasma membrane, and rat liver cytochrome b5. Biosynthetically these proteins show a common feature in that they are synthesized without a transient NH2-terminal signal sequence. Two of these proteins, ATPase and MP26, were shown to require the recently discovered signal-recognition particle (SRP) [Walter, P. & Blobel, G. (1982) Nature (London) 299, 691-698] for integration. By this criterion, therefore, they each contain at least one uncleaved signal sequence. Surprisingly, however, the uncleaved signal sequence(s) of these two proteins did not induce the characteristic SRP-mediated translation arrest that was previously shown for a cleaved signal sequence. Unlike ATPase and MP26, cytochrome b5 did not require SRP for integration into microsomal membrane. Thus, the distinction between an "insertion" sequence (specifying unassisted and opportunistic integration into any exposed membrane) and a "signal" sequence (directing integration into a specific membrane by a receptor-mediated mechanism) is a valid one. By assaying for SRP dependence, the two mechanisms of integration can now be experimentally distinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.