Abstract

BackgroundInsulin resistance (IR) is one of the major hallmark for pathogenesis and etiology of type 2 diabetes mellitus (T2DM). IR is directly interlinked with various inflammatory responses which play crucial role in the development of IR. Inflammatory responses play a crucial role in the pathogenesis and development of IR which is one of the main causative factor for the etiology of T2DM.MethodsA comprehensive online English literature was searched using various electronic search databases. Different search terms for pathogenesis of IR, role of various inflammatory responses were used and an advanced search was conducted by combining all the search fields in abstracts, keywords, and titles.ResultsWe summarized the data from the searched articles and found that inflammatory responses activate the production of various pro-inflammatory mediators notably cytokines, chemokines and adipocytokines through the involvement of various transcriptional mediated molecular pathways, oxidative and metabolic stress. Overnutrition is one of the major causative factor that contributes to induce the state of low-grade inflammation due to which accumulation of elevated levels of glucose and/or lipids in blood stream occur that leads to the activation of various transcriptional mediated molecular and metabolic pathways. This results in the induction of various pro-inflammatory mediators that are decisively involved to provoke the pathogenesis of tissue-specific IR by interfering with insulin signaling pathways. Once IR is developed, it increases oxidative stress in β-cells of pancreatic islets and peripheral tissues which impairs insulin secretion, and insulin sensitivity in β-cells of pancreatic islets and peripheral tissues, respectively. Moreover, we also summarized the data regarding various treatment strategies of inflammatory responses-induced IR.ConclusionsIn this article, we have briefly described that how pro-inflammatory mediators, oxidative stress, transcriptional mediated molecular and metabolic pathways are involved in the pathogenesis of tissues-specific IR. Moreover, based on recent investigations, we have also described that to counterfeit these inflammatory responses is one of the best treatment strategy to prevent the pathogenesis of IR through ameliorating the incidences of inflammatory responses.

Highlights

  • Insulin resistance (IR) is one of the major hallmark for pathogenesis and etiology of type 2 diabetes mellitus (T2DM)

  • Inflammation is produced, it provokes its deleterious effects on β-cells of pancreatic islets due to which impaired insulin secretion occurs in β-cells of pancreatic islets

  • Experimental studies have been conducted on various experimental animal models to investigate the presence of various inflammatory responses in β-cells of pancreatic islets and peripheral tissues which indicate that IL-β is a master pro-inflammatory mediator that plays its pivotal role to activate numerious other pro-inflammatory cytokines and chemokines [4, 17] through the involvement of various transcriptional mediated pathways

Read more

Summary

Introduction

Insulin resistance (IR) is one of the major hallmark for pathogenesis and etiology of type 2 diabetes mellitus (T2DM). Inflammatory responses play a crucial role in the pathogenesis and development of IR which is one of the main causative factor for the etiology of T2DM. Insulin resistance (IR) has long been considered as a major hallmark for the etiology and pathogenesis of type 2 diabetes mellitus (T2DM). A growing body of evidence has shown that various pro-inflammatory markers such as IL-1β, IL-6, TNF-α, CRP and many chemokines [10,11,12] are directly or indirectly linked to IR which in turn is more or less commonly accompanied by abnormally elevated levels of pro-inflammatory cytokines, obesity, hypertension and/or glucolipotoxicity [4, 11, 13].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.