Abstract

Impulsive choice is preference for a smaller-sooner (SS) outcome over a larger-later (LL) outcome when LL choices result in greater reinforcement maximization. Delay discounting is a model of impulsive choice that describes the decaying value of a reinforcer over time, with impulsive choice evident when the empirical choice-delay function is steep. Steep discounting is correlated with multiple diseases and disorders. Thus, understanding the processes underlying impulsive choice is a popular topic for investigation. Experimental research has explored the conditions that moderate impulsive choice, and quantitative models of impulsive choice have been developed that elegantly represent the underlying processes. This review spotlights experimental research in impulsive choice covering human and nonhuman animals across the domains of learning, motivation, and cognition. Contemporary models of delay discounting designed to explain the underlying mechanisms of impulsive choice are discussed. These models focus on potential candidate mechanisms, which include perception, delay and/or reinforcer sensitivity, reinforcement maximization, motivation, and cognitive systems. Although the models collectively explain multiple mechanistic phenomena, there are several cognitive processes, such as attention and working memory, that are overlooked. Future research and model development should focus on bridging the gap between quantitative models and empirical phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call