Abstract
As one of the representative superinsulating materials, the aluminum trioxypropyl Al(OC(3)H(7))(3) aerogel may be applied in launch vehicles and manned spacecrafts. In this study, the structures and hydrolysis mechanisms of the monomer, dimers, and trimers of Al(OC(3)H(7))(3) in neutral and alkaline environments were studied at the B3LYP/6-31G(d,p) level by using the CPCM solvation model to understand the fundamental chemistry of Al(OC(3)H(7))(3) hydrolysis and oligomerization. Our calculation shows that the first-order hydrolyses of the monomer and oligomers are energetically favorable in both alkaline and neutral solutions. In alkaline solutions, they are more apt to oligomerize than to hydrolyze due to high energy barriers and large binding energies in the formation of anionic species. For the oligomers under neutral condition (1) Al(OC(3)H(7))(3) is linked by four-membered Al-O rings with pentacoordinated bridging and tetracoordinated Al atoms, (2) the hydrolyzed propoxy groups will be expelled by solvent molecules, and (3) partly hydrolyzed species can condense to oligomers with bridging OH groups or O atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.