Abstract

This study investigated the hydrogen embrittlement of a high strength Zr or Cr- added aluminum alloy specimens containing coherent Al3Zr or incoherent Al18Mg2Cr3 dispersoids, respectively. The elastic interaction between coherency strain and hydrogen leads to the accumulation of hydrogen at Al3Zr dispersoids and an additional peak in the thermal desorption spectra. For Al18Mg2Cr3 dispersoids, the elastic strain induced by lattice misfit decreases by the introduction of the misfit dislocations leading to hydrogen trapping by misfit dislocations. The obtained results firstly revealed that the presence of coherent Al3Zr dispersoids in the matrix results in a superior hydrogen embrittlement resistance of the alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.