Abstract

Cod proteins (CPs) are considered potential functional ingredients for developing gel-based foods, but present studies on the aggregation behavior of CPs upon heating remain limited. With this respect, the heat-induced aggregation kinetics of CPs at a subunit level was investigated. Based on different centrifugal forces, CPs aggregates were divided into three fractions: large-sized, intermediary-sized, and small-sized aggregates. SDS-PAGE and diagonal SDS-PAGE indicated that myosin heavy chains exhibited a higher affinity with actin to form intermediary-sized and large-sized aggregates; tropomyosin and myosin light chains were hardly engaged in the thermal aggregation and formed small-sized aggregates. The highly-polymerized aggregates adopted considerable transitions of helix-to-sheet in protein structures, whereas the structure of small-sized aggregates featured substantial helix-coil transitions. Furthermore, molecular interactions at different heating stages were revealed. These novel insights might advance our knowledge on the heat-induced aggregation behavior of CPs and provide fundamental information for the application of CPs in gel-based foods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call