Abstract

Hydrogen peroxide (H2O2) is produced by inflammatory and vascular cells and induces oxidative stress, which may contribute to vascular disease and endothelial cell dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are not well understood, although O2 may play a role. Recent studies have documented increased O2 in endothelial cells exposed to H2O2 via uncoupled nitric oxide synthase (NOS) and NADPH oxidase under static conditions. To assess responses to H2O2 in porcine aortic endothelial cells (PAEC) under shearing conditions, a constant flow rate of 24. 4 ml/min was applied to produce physiologically relevant shear stress (8. 2 dynes/cm). Here we demonstrate that treatment with 100 muM H2O2 increases intracellular O2 levels in PAEC. In addition, we demonstrate that l-NAME, an inhibitor of NOS, and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2 under physiologic shear suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Co-inhibition of NOS and NADPH oxidase also reduced intracellular O2 levels under shear. We conclude that H2O2-induced oxidative stress in endothelial cells exhibits increased intracellular O2 levels through NOS and NADPH oxidase under shear. The inhibition of NOS and NADPH with H2O2 exposure is nonlinear, suggesting some interdependent or compensating system within endothelial cells. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction in cardiovascular diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.