Abstract
Graphene is an important material with unique electronic properties. Aiming to obtain high quality samples at a large scale, graphene growth on metal surfaces has been widely studied. An important topic in these studies is the atomic scale growth mechanism, which is the precondition for a rational optimization of growth conditions. Theoretical studies have provided useful insights for understanding graphene growth mechanisms, which are reviewed in this article. On the mostly used Cu substrate, graphene growth is found to be more complicated than a simple adsorption-dehydrogenation-growth model. Growth on Ni surface is precipitation dominated. On surfaces with a large lattice mismatch to graphene, epitaxial geometry determin a robust nonlinear growth behavior. Further progresses in understanding graphene growth mechanisms is expected with intense theoretical studies using advanced simulation techniques, which will make a guided design of growth protocols practical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.