Abstract

Glucocorticoids modify osteoblastic cell differentiation, number, and function. Glucocorticoids stimulate osteoclastogenesis and increase the expression of receptor activator of Nuclear factor-kappaB ligand and colony-stimulating factor-1, and decrease the expression of osteoprotegerin. However, the most significant effect of glucocorticoids in bone is an inhibition of bone formation. This inhibition is caused by a decrease in the number of osteoblasts secondary to a shift in the differentiation of mesenchymal cells away from the osteoblastic lineage, and an increase in the death of mature osteoblasts. Glucocorticoids decrease the function of the remaining osteoblasts directly and indirectly through the inhibition of insulin-like growth factor I expression. The stimulation of bone resorption is likely responsible for the initial bone loss after glucocorticoid exposure. Eventually, the inhibition of bone formation will cause a decrease in bone remodeling and a continued increased risk of fractures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call