Abstract

Flow-induced translocation of linear and ring polymers is studied by using a combination of multiparticle collision dynamics and molecular dynamics. The results show that both end capture and fold capture are present in the capture process of linear chains in weak flows, whereas fold capture becomes dominant in strong flows, resulting in similar behavior for the linear and ring chains in the strong flow regime. For narrow channels, the critical flux decreases with the increase of channel size, which is qualitatively consistent with the prediction by Wu et al.; for large channel sizes (which are still smaller than the polymer size), the critical flux is independent of channel size, in agreement with an earlier prediction by de Gennes et al. The presence of these two scaling regimes indicates that the confined blob exhibits a crossover from free draining to nondraining as the channel size increases. Moreover, we found that the conformation of the polymer exhibits a flow-induced coil–compact–stretch transition, and the transition does not appear to be first order. In addition, we observed that the monomers far from the channel and in the channel exhibit independent dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.