Abstract

Gallbladder Cancer (GBC) is a lethal malignancy with limited treatment options and poor prognosis. Recent studies have emphasized the role of ferroptosis, a regulated form of cell death, in various cancers, including GBC. We applied bioinformatics methodologies on four GBC datasets to identify differentially expressed genes (DEGs). An intersection of DEGs from the four datasets with ferroptosis and GBC-associated genes was done to identify key ferroptosis-related genes in GBC. GSVA pathway enrichment analysis and immune cell infiltration assessment were conducted to explore their functional roles and interactions. Seven ferroptosis-related genes, EZH2, MUC1, PVT1, GOT1, CDO1, LIFR, and TFAP2A, were identified to be related to GBC. These genes were associated with vital signaling pathways like the G2/M checkpoint and DNA repair and showed significant correlations with immune cell infiltration in GBC. Receiver Operating Characteristic (ROC) curve analysis revealed their high diagnostic potential, with Area Under the Curve (AUC) values ranging from 0.796 to 0.953. Our findings underscore the pivotal role of ferroptosis in GBC and the potential of ferroptosis-related genes as diagnostic biomarkers. This study lays a foundation for further research into ferroptosis-based therapeutic strategies for GBC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call