Abstract
Mechanisms of femoral fracture of the condyles and shaft were experimentally investigated through controlled knee impact of denuded femurs in six human cadavers. High-speed movies recorded knee joint compression, femoral displacements and deformation, and fracture initiation. Fracture initiated at 10.6 ± 2.7 kN knee load after 1.3 ± 0.1 cm of knee joint compression for a 10.1 kg rigid impact at 13.2 ± 1.4 m/s. Interestingly, fracture occurred 0.5 ms–1.5 ms after the peak in applied knee load of 18.3 ± 6.9 kN, probably because a significant portion of the load is developed by inertial accelerations displacing the femur and coupled masses. Axial strain measurements at the femoral midshaft showed increasing anteroposterior bending and compressional deformations until the initiation of observed fracture. The kinematics of the observed fracture and the midshaft deformational strains indicate that fracture is predominantly due to tensile strain from anteroposterior bending of the femoral shaft or patellar wedging of the condyles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.