Abstract

We have investigated electrochemical switching of excited-state electronic energy migration in two optoelectronic gates with different architectures. Each gate consists of diarylethyne-linked subunits: a boron-dipyrrin (BDPY) input unit, a Zn-porphyrin transmission unit, a free-base-porphyrin (Fb-porphyrin) output unit, and a Mg-porphyrin redox-switched site connected either to the Fb porphyrin (linear gate) or to the Zn porphyrin (branched, T gate). Both the linear and branched architectures show Fb-porphyrin emission when the Mg porphyrin is neutral and nearly complete quenching when the Mg porphyrin is oxidized to the π-cation radical. To determine the mechanism of gating, we undertook a systematic photophysical study of the gates and their dyad and triad components in neutral and oxidized forms, using static and time-resolved optical spectroscopy. Two types of photoinduced energy-transfer (and/or charge-transfer) processes are involved in gate operation: transfer between adjacent subunits and transfer between nonadjacent subunits. All of the individual energy-transfer steps that funnel input light energy to the fluorescent output element in the neutral systems are highly efficient, occurring primarily by a through-bond mechanism. Similarly efficient energy-transfer processes occur between the BDPY and the Zn and Fb porphyrins in the oxidized systems, but are followed by rapid and efficient energy/charge transfer to the redox-switched site and consequent nonradiative deactivation. Energy/charge transfer between nonadjacent porphyrins, which occurs principally by superexchange, is crucial to the operation of the T gate. Collectively, our studies elucidate the photophysics of gating and afford great flexibility and control in the design of more elaborate arrays for molecular photonics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call