Abstract

Conditions for the appearance and observation of prescission gamma rays emitted by a fissioning nucleus prior to its separation into fission fragments were investigated within quantum-mechanical fission theory. It is shown that these conditions are realizable in the gamma decay of isovector electric giant dipole resonances in a fissile nucleus that are excited because of nonadiabaticity of the collective deformation motion of the nucleus at the ultimate stages of its prefission evolution. Angular and energy distributions of prescission gamma rays emitted by unpolarized fissioning nuclei are analyzed. Features of T-odd correlations in angular distributions of gamma rays arising in the fission of unpolarized target nuclei that is induced by polarized cold neutrons are investigated, and it is shown that these correlations are similar in nature to T-odd ROT correlations discovered earlier for alpha particles emitted in the ternary fission of nuclei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call