Abstract
The immobilization of enzymes in solid-state nanochannels is a new avenue for the design of biosensors with outstanding selectivity and sensitivity. This work reports the first theoretical model of an enzymatic nanochannel biosensor. The model is applied to the system previously experimentally studied by Lin, et al. (Anal. Chem. 2014, 86, 10546): a hourglass nanochannel modified by glucose oxidase for the detection of glucose. Our predictions are in good agreement with experimental observations as a function of the applied potential, pH and glucose concentration. The sensing mechanism results from the combination of three processes: i) the establishment of a steady-state proton concentration gradient due to a reaction-diffusion mechanism, ii) the effect of that gradient on the charge of the adsorbed enzymes and native surface groups, and iii) the effect of the resulting surface charge on the ionic current. Strategies to improve the sensor performance based on this mechanism are identified and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chemistry – An Asian Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.